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 A B S T R A C T

The significant features identified in a representative subset of the dataset during the learning process 
of an artificial intelligence model are referred to as a ‘global’ explanation. Three-dimensional (3D) global 
explanations are crucial in neuroimaging, where a complex representational space demands more than 
basic two-dimensional interpretations. However, current studies in the literature often lack the accuracy, 
comprehensibility, and 3D global explanations needed in neuroimaging and beyond. To address this gap, 
we developed an explainable artificial intelligence (XAI) 3D-Framework capable of providing accurate, low-
complexity global explanations. We evaluated the framework using various 3D deep learning models trained on 
a well-annotated cohort of 596 structural MRIs. The binary classification task focused on detecting the presence 
or absence of the paracingulate sulcus (PCS), a highly variable brain structure associated with psychosis. Our 
framework integrates statistical features (Shape) and XAI methods (GradCam and SHAP) with dimensionality 
reduction, ensuring that explanations reflect both model learning and cohort-specific variability. By combining 
Shape, GradCam, and SHAP, our framework reduces inter-method variability, enhancing the faithfulness and 
reliability of global explanations. These robust explanations facilitated the identification of critical sub-regions, 
including the posterior temporal and internal parietal regions, as well as the cingulate region and thalamus, 
suggesting potential genetic or developmental influences. For the first time, this XAI 3D-Framework leverages 
global explanations to uncover the broader developmental context of specific cortical features. This approach 
advances the fields of deep learning and neuroscience by offering insights into normative brain development 
and atypical trajectories linked to mental illness, paving the way for more reliable and interpretable AI 
applications in neuroimaging.
1. Introduction

In both medical imaging and neuroscience, explainability holds 
paramount importance. Recently, the study by Mamalakis et al. [1] 
introduced the necessity of explanations in artificial intelligence (AI) 
healthcare applications, categorizing them into four types: self-explai-
nable, semi-explainable, non-explainable applications, and new-pattern 
discovery. This categorization is based on the variability of expert opin-
ions, the stability of the evaluation protocol, and the dimensionality of 
the problem.

∗ Correspondence to: University of Cambridge, Department of Psychiatry, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge, CB2 0SZ, UK.
E-mail address: mm2703@cam.ac.uk (M. Mamalakis).

1 Equal contribution

In neuroscience AI applications, there commonly exists significant 
variability in evaluation protocols and decision-making among experts. 
The inherent high uncertainty creates a greater need for explainability 
(as the framework falls in the non-explainable category; [1]). To this 
end, applications usually need both ‘‘local’’ methods, which provide 
explanations for each AI prediction separately, and ‘‘global’’ methods, 
which derive explanations for the decision-making of the AI across the 
entire dataset. Such variability underscores the importance of thorough 
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investigation and validation of AI model behavior. Even among expe-
rienced professionals, knowledge gaps can persist, and this is where 
AI has the potential to offer insights and stabilize the validity of key 
aspects of the evaluation protocols [2]. This is particularly true for 
classification tasks where the key features of a disease are not yet firmly 
established (matching the new-patterns discovery category; [1]).

The folding of the human cortical surface occurs during the peri-
natal period and remains constant for an individual for the rest of 
their life, much like a fingerprint, preserving early neurodevelopmental 
information [3]. Broadly, human brains share many features of corti-
cal folding (sulci), however strong inter-individual variability creates 
inherent divergence in experts’ opinions when it comes to labeling the 
more variable sulci, impeding the effort to automatically label sulci in 
the regions showing most variability.

While, to date, automated methods excel in the detection of most 
sulci, the variable shape and presence/absence of some sulci present a 
more complex computational hurdle [4]. Successful automation thro-
ugh generalized, unbiased annotation would greatly aid studies fo-
cusing on brain folding variations, which are proxies for a critical 
developmental period with information that may relate to cognitive, 
behavioral, and developmental outcomes, along with psychiatric and 
neurological disorders. Brain folding is linked to brain function, and 
specific folding patterns correlate with susceptibility to neurological 
issues [5]. In particular, the morphology of the paracingulate sulcus 
(PCS), a highly variable sulcus, is associated with cognitive perfor-
mance and hallucinations in schizophrenia [6–9]. To this end, devel-
oping networks that can identify the presence or absence of PCS (or 
multiple PCS elements) in brain magnetic resonance imaging (MRI) 
and creating frameworks that can provide both local and global ex-
planations would allow for a more systematic characterization and a 
more comprehensive understanding of whole-brain correlates related 
to its presence. This, in turn, would allow for both more precise and 
holistic assessments of its functional relevance and impact on brain 
functions [10].

However, a significant challenge arises in neuroimaging due to the 
high representational dimensionality of AI applications, the anatomical 
complexity of the brain, the use of unstable evaluation protocols, 
and the intricate yet uncertain nature of expert annotations. These 
factors make tasks in this domain particularly difficult to explain 
and evaluate. Conventional 2D local or global XAI methods often 
fall short and, in some cases, may even produce misleading explana-
tions [1]. Additionally, as highlighted in [11], the issue of inter-method 
variability—where different XAI methods emphasize different features 
as important—can significantly erode trust in AI within the scientific 
community. These challenges underscore the urgent need for 3D expla-
nation frameworks that can surpass the limitations of traditional XAI 
methods and provide more reliable global explanations.

1.1. Aim and contribution of the study

This study introduces, for the first time, a comprehensive frame-
work to validate and explain deep learning models, providing trans-
formative insights into pattern learning while establishing a new stan-
dard of credibility and reliability for such networks. The proposed 
XAI 3D-Framework tackles the intricate challenges of explainability in 
neuroimaging, enabling the detection and interpretation of complex 
patterns related to the presence or absence of the paracingulate sul-
cus (PCS), a highly variable cortical structure associated with reality 
monitoring and psychotic conditions.

To achieve this, we developed an innovative methodology that 
employs two complementary local XAI methods, GradCam and SHAP, 
extended into 3D space to analyze the entire dataset used in the 
binary classification task. These methods are integrated with statistical 
patterns derived from the 3D brain inputs (Shape) via dimensionality 
reduction, producing global explanations that outperform traditional 
XAI methods in both interpretability and faithfulness. By combining 
2 
these complementary approaches, our framework not only reveals the 
underlying learning patterns within the network but also significantly 
enhances the accuracy and clarity of the results. For the PCS classifica-
tion task, we implemented two distinct 3D deep learning architectures: 
a simple 3D convolutional neural network (simple-3D-CNN) and a 
two-headed attention layer network with diverse backbone options 
(2CNN-3D-MHL and simple-3D-MHL). These networks utilized high-
resolution 3D brain inputs, including grey-white surface boundaries and 
sulcal skeletons from both hemispheres. Leveraging a well-annotated 
cohort of 596 subjects from the TOP-OSLO study [12], we trained, 
validated, and tested these networks, employing a 70%-20%–10% data 
split.

Our framework introduces several pivotal innovations to the do-
main of explainable AI in neuroimaging: (i) By integrating statistical 
features (Shape) that are correlated with reduced dimensionality in-
formation, the framework ensures that the discovered patterns are not 
only grounded in the AI model’s learning but also reflect cohort-specific 
variability. This dual-layered approach bridges statistical data and 
model-derived insights, enabling a deeper and more contextually rele-
vant understanding of the results. (ii) The extension of established XAI 
methods, such as GradCam and SHAP, into the 3D domain addresses 
the critical need for 3D explanations in neuroimaging applications. 
Conventional 2D local or global XAI methods often fall short and, in 
some cases, may even produce misleading explanations. (iii) The use 
of GradCam and SHAP in tandem reduces inter-method variability and 
bolsters the reliability of the explanations, setting a new benchmark 
for trustworthy AI applications. The proposed multi-method frame-
work delivers robust and actionable insights, particularly in complex 
neuroimaging tasks such as cortical morphology studies.

Notably, the XAI 3D-Framework demonstrated superior perfor-
mance compared to traditional XAI methods in terms of faithfulness for 
global explanations, successfully identifying significant sub-regions of 
an atlas brain (the ICBM 2009a Nonlinear Asymmetric atlas, [13,14]). 
This capability provides a transparent and reliable mechanism to trace 
the patterns driving network decisions, enhancing trust and enabling 
deeper exploration of deep learning model outputs in neuroscience. 
By combining methodological rigor with practical innovation, this 
framework opens new avenues for understanding and interpreting 
brain structure-function relationships, making it a foundational tool for 
advancing both research and clinical applications in neuroimaging.

2. Related work

2.1. The application: Sulcal pattern studies

Cortical folding, which develops during the perinatal period (i.e., in 
the last few months of gestation and the first few months after birth), 
results in significant inter-individual variability often overlooked in 
population studies. Understanding the variability of sulcal patterns is 
critical for multiple reasons: strict descriptive anatomy, refinement of 
inter-subject registration, investigation of neurodevelopmental mecha-
nisms, and the search for anatomo-functional correlates. These patterns 
hold potential for investigating healthy functional variability (e.g., the 
relationship between cingulate folding patterns and functional con-
nectivity [15]) and pathological outcomes (e.g., paracingulate folding 
linked to hallucinations in schizophrenia [16]).

While the study of cortical folding variability has been approached 
through global methods—considering whole-brain or regional sulcal 
parameters such as gyrification index or sulcal pits—finer investiga-
tions often require a focus on specific sulci. This underscores the need 
for automated sulcal recognition methods. Although several techniques 
have been developed for general sulcal labeling (reviewed in [17]), to 
the best of our knowledge, no current method can automatically label 
the PCS in a 3D approach; most rely on 2D analyses of specific MRI 
slices [18]. The omission of PCS in whole-brain labeling stems from its 
complex anatomical specification, defined not only by its location but 
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also by its orientation (parallel to the cingulate sulcus). Consequently, 
even newer labeling frameworks fail to identify the PCS within the 
medial frontal cortex [4].

This gap is particularly critical given the potential importance of 
investigating whole-brain anatomical correlates of PCS variability in 
understanding severe symptoms of psychosis. Automatic detection of 
the PCS is valuable for large dataset exploration, especially given 
its links to functional variability in reality monitoring [10]. More-
over, incorporating an explainability component through advanced XAI 
frameworks is unprecedented and transformative. It allows not only for 
the identification of the PCS but also for uncovering new patterns in its 
anatomical covariates, offering insights into the functional mechanisms 
underlying its role. The integration of XAI with AI classification thus 
provides a robust platform for both enhancing interpretability and 
advancing our understanding of the broader neurodevelopmental and 
pathological contexts associated with the PCS.

2.2. Explainable methods

Recent studies have seen a significant surge in the exploration of 
XAI within medical image analysis and neuroimaging domains [19–22]. 
XAI methodologies are broadly categorized into interpretable and post-
hoc approaches. Interpretable methods focus on models that possess 
inherent properties such as simulatability, decomposability, and trans-
parency, often linked to linear techniques like Bayesian classifiers, 
support vector machines, decision trees, and K-nearest neighbor al-
gorithms [23]. On the other hand, post-hoc methods are typically 
used with AI techniques to reveal nonlinear mappings within complex 
datasets [19,23].

A widely used post-hoc technique is Local Interpretable Model-
Agnostic Explanations (LIME), which explains the network’s predic-
tions by building simple interpretable models that approximate the 
deep network locally, i.e. in the close neighborhood of the detected 
structure [24]. Post-hoc techniques include both model-specific ap-
proaches that address specific nonlinear behaviors and model-agnostic 
approaches that explore data complexity [19,23]. In computer vision, 
model-agnostic methods such as LIME and perturbation techniques are 
widely used, while model-specific methods encompass feature rele-
vance, condition-based explanations, and rule-based learning [23,25,
26].

In medical imaging, explainable methods often focus on attribution 
and perturbation techniques [27]. Attribution techniques like LIME as 
well as Layer-wise Relevance Propagation (LRP), Gradient-weighted 
Class Activation Mapping (GradCAM), and Shapley Additive Explana-
tions (SHAP) identify important features for a given prediction by as-
signing relevance scores to the input features. Perturbation techniques 
assess the sensitivity of an AI prediction to specific input features by 
systematically altering sub-groups of the input data [24,27]. GradCAM 
is notably prevalent among explainable methods in medical imaging 
due to its ease of application and understanding, as well as its ability 
to map significant features in the imaging space using the activations 
of the last convolutional layers [24].

By advancing these explainable methodologies we can better in-
terpret complex models, enhancing their transparency and trustwor-
thiness, particularly in applications like medical imaging, and neu-
roimaging. An important gap in the literature is the absence of three-
dimensional representation frameworks that can explain complex mod-
els, such as those used in neuroscience, by providing faithful global ex-
planations. Such frameworks could offer more accurate interpretations 
than established approaches, potentially improving AI transparency 
and uncovering new patterns in significant sub-regions involved in 
classification and prediction.
3 
3. Materials and methods

In this study, we utilized different 3D classifiers to address the 
binary classification problem of determining the presence or absence 
of PCS. Furthermore, we developed a novel XAI 3D framework for 
non-explainable and new-pattern discovery tasks [1]. We employed 
two distinct explanation methods from the post-hoc family, SHAP and 
GradCam, which were expanded into three-dimensional space. The out-
comes from these two explainable methods (SHAP and GradCam) were 
concatenated with results derived from a statistical feature extraction 
model (Shape). The statistical model is a transparent dimensionality 
reduction algorithm applied to the input data of the validation cohort. 
This comprehensive approach aims to mitigate potential biases and 
enhance the robustness of pattern learning discovery.

3.1. Architectural design of deep learning networks for the classification 
task

We used two different deep learning models for the binary classifica-
tion task (Fig.  1b.,c.). The first network was a 3D Convolutional Neural 
Network (CNN) with five levels (see Fig.  1b.). Each level incorporated a 
CNN block with a 3D convolution layer, a 3D max-pooling layer, and a 
batch normalization layer. In the first three levels, the 3D convolution 
layer employed 64, 128, and 256 filters, respectively (as shown in Fig. 
1b.). The last level connected to a multi-layer perceptron (MLP) for 
the final prediction (as illustrated in Fig.  1a.). The MLP comprised 
three distinct perceptrons and two dropout layers to estimate epistemic 
uncertainty. For the second network (Fig.  1c.), we used a combination 
of multi-head attention layers (MHL) to focus on the global diversity 
and variation of a backbone output. To reduce the biased choice 
of only one backbone selection, we opted for two distinct backbone 
networks: (i) a 3D Convolution layer block with two levels of 64 and 
128 filters a Global Average Pooling, and a perceptron of 32400 hidden 
layers (2CNN-3D-MHL), and (ii) the straightforward 3D CNN network 
outlined previously (Fig.  1b., simple-3D-MHL). We used the multi-head 
attention mechanism described in [28] and as we used a two-head 
attention of the same input (‘‘self-attention’’). The two heads (ℎ𝑒𝑎𝑑𝑐) 
are given by: 
ℎ𝑒𝑎𝑑𝑐 = 𝐴𝑇 (𝑄𝑊 𝑄

𝑐 , 𝐾𝑊 𝐾
𝑐 , 𝑉 𝑊 𝑉

𝑐 ) (1)

where 𝑐 is the backbone output. There are two outputs corresponding 
to the two uses of the backbone, and each output is connected to a 
perceptron with 𝑁 hidden layers (where 𝑁 is equal to the product of 
the weight and height of the input image). The 𝐴𝑇  is the attention layer 
and it computed by: 

𝐴𝑇 (𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 (2)

where the input matrix are combinations of queries and keys of dimen-
sion 𝑑𝑘, and values of dimension 𝑑𝑣. Queries are packed together into 
a matrix 𝑄. The keys and values are also packed together into matrices 
𝐾 and 𝑉 . The output of the MHL network is given by: 
𝑀𝐻𝐿 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑𝑐 , ℎ𝑒𝑎𝑑𝑐 ) (3)

where 𝑐 defines by the 𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒𝑜𝑢𝑡𝑝𝑢𝑡. The output of the MHL was passed 
again from the MLP presented above to make the final prediction.

3.2. Extending explainability methods in 3D space

We used two distinct explainable techniques: the widely-utilized 
sensitivity local explainability technique in medical imaging applica-
tions known as the GradCam method [29], and a robust attribution 
explainability technique called SHAP [30].

The significance of the 3D space in neuroscience applications em-
phasizes a necessity to extend 2D XAI methods into three dimensions. 
In the pursuit of computing the class-discriminative localization map 
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Fig. 1. The input modalities and the architecture of simple-3D-CNN and the simple-3D-MHL networks. a, Input modalities illustrated on a right hemisphere 
coronal slice. In more detail, the raw MRI of a given subject, the corresponding grey-white surface, and the corresponding sulcal skeleton. b, The architecture 
of simple-3D-CNN network with explanation of 3D Convolution layer (3D Conv) and 3D Max Pooling layer on the left. c, The three dimension MHL model with 
two different backbone choices, the full simple-3D-CNN (simple-3D-MHL) and the two level simple-3D-CNN layer (2CNN-3D-MHL).
encompassing width 𝑤, height ℎ, and depth 𝑑 within a specific 3D 
brain MRI corresponding to a class 𝑐 (PCS or noPCS), the computation 
involves determining the gradient of the score for class 𝑐, denoted 
as 𝑦𝑐 , in relation to the 𝑛th feature activation map (𝐴𝑛) of the final 
convolution layer in each deep network. To determine the importance 
weights (𝛼𝑐) for each 𝑛 feature activation map, global average pooling 
𝑛

4 
is employed over the width (𝑖), height (𝑗), and depth (𝑘) of each feature.

𝛼𝑐𝑛 = 1
𝑍

∑

𝑖

∑

𝑗

∑

𝑘

𝑑𝑦𝑐

𝑑𝐴𝑛
𝑖𝑗𝑘

(4)

where 𝑍 the summation of 𝑖, 𝑗 and 𝑘. Moreover, we used a weighted 
combination of forward activation maps and a 𝑅𝑒𝐿𝑈 to deliver the final 
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Fig. 2. Classification task determination and the transition from local to global 3D explaination. a, Illustration of the no PCS condition (no PCS), and the PCS 
condition (PCS, in green line) on two left hemisphere 3D white matter reconstructions obtained with BrainVISA. The cingulate sulcus is colored in yellow and 
blue and the callosal sulcus is colored in purple. b, The 3D explainable framework that provides both local and global interpretations and explanations of our 
deep learning 3D classification network’s results. The ratio of the faithfulness and complexity metrics were computed at that stage. In this example we include 
only the GradCam explainability method for simplicity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
GradCam activation map. 
𝐺𝑟𝑎𝑑𝐶𝑎𝑚 = 𝑅𝑒𝐿𝑈 (

∑

𝑛
𝛼𝑐𝑛𝐴

𝑛
𝑖𝑗𝑘) (5)

SHAP computes the attribution of each pixel of an input image for a 
specific prediction of a computer vision task. Attribution explainability 
methods follow the definition of additive feature attribution mainly as 
a linear function of: 

𝑔(𝑓, 𝑥) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑥𝑖 (6)

where 𝑓 is the prediction network, 𝑔(𝑓, 𝑥) is the explanation model, 𝜙𝑖
is the importance of each feature attribution (𝜙𝑖 ∈ R), and 𝑀 is the 
number of simplified input features (pixels). Shapley value estimation 
is one of the main mathematical formulations that the SHAP algorithm 
uses to assign an importance value to each feature, representing the 
effect on the model prediction of including that feature (attribution). 
If we define a subset 𝑆 of the total feature space (𝐹 ) of an input 3D 
image (𝑖 = 1...𝑁 , where 𝑁 is the number of samples in the dataset), 
5 
and 𝑥𝑖 is a 3D matrix of width 𝑤 and height ℎ and depth 𝑑 for the 𝑖th 
sample, and 𝑥𝑆 is the subset of chosen features in the 3D space, then: 

𝜙𝑖 =
∑

𝑆∕(𝑖)

|𝑆|!(|𝐹 | − |𝑆| − 1)!
|𝐹 |!

[𝑓𝑆(𝑖)(𝑥𝑆(𝑖)) − 𝑓𝑆 (𝑥𝑆 )] (7)

Here, 𝑓𝑆(𝑖) is a model trained with the presented 𝑥𝑠 features, and 𝑓𝑆
is another model trained with the features withheld. For our study, we 
used Deep SHAP [30] to describe our deep learning network models. 
This approach uses a chain rule and linear approximation as described 
in [30].

3.3. The XAI 3D-framework

The XAI 3D-Framework introduces a groundbreaking approach to 
generating global explanations that facilitate the discovery of new 
patterns in neuroimaging studies. Our proposed framework uniquely 
integrates statistical features derived from cohort data (Shape) with 
insights from two complementary explainability methods, GradCam 
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Fig. 3. The proposed global 3D-Framework explanation. A weighted averaging (Weight tensor: [0.85, 0.7, 0.5, 0.3, 0.1, 0.001]) of six PCA components produces 
the average PCA image for PCA-Shape, PCA-GradCam, and PCA-SHAP. Following this, a weighted averaging (Weight tensor: [0.85, 0.5, 0.1]) of the three Global 
PCA overlapping images extracted the total overlapping image. This total overlapping image was then registered on a sulcal probabilistic atlas (the ICBM 2009a 
Nonlinear Asymmetric atlas, [13,14]) to unveil the model’s pattern for determining the presence or absence of the PCS.
and SHAP, in a three-dimensional space. By combining statistical in-
formation with model-driven learning, the framework provides a dual-
layer understanding: one rooted in the cohort’s inherent variability 
and the other reflecting the AI model’s decision-making processes 
based on the classification task. Such integration not only enhances 
robustness but also minimizes inter-method variability and potential 
biases [11], ensuring reliable and interpretable outcomes. The use of 
multiple methods, as opposed to relying on a single explainability 
approach, represents a significant step forward in delivering more 
comprehensive and trustworthy explanations, especially in challenging 
contexts like cortical morphology.

To achieve its goals, the framework employs GradCam and SHAP, 
two widely used explainability methods, expanded into three-dimens-
ional space to extract local explanations from deep learning classi-
fiers (simple-3D-CNN and simple-3D-MHL; Fig.  2 b.). Faithfulness and 
complexity scores are assigned to evaluate the quality of these local 
explanations, ensuring they meet predefined thresholds (see Supple-
mentary Material Table 2). To generate global explanations, we apply 
Principal Component Analysis (PCA; [31]) to both the sulcal skeleton 
and grey-white surface 3D brain inputs, capturing a variety of global 
feature importance patterns (PCA-Shape; see Fig.  3). After testing dif-
ferent configurations, the optimal solution—capturing over 80% of the 
cohort variance—was achieved with six PCA components.

The global explanations derived from GradCam and SHAP yielded 
superior faithfulness and complexity results when computed as a weig-
hted average of their six PCA components using the tensor [0.85, 0.7, 
0.5, 0.3, 0.1, 0.001], as shown in Supplementary Table 2 (section ii, 
iii), which compares this full aggregation approach (section ii) to using 
only the first PCA component (section iii). These weighted averages 
formed the final global explanations (total-GradCam and total-SHAP). 
In parallel, the same approach was applied in the Shape domain to 
determine the global statistical feature importance of sulcal skeleton 
and grey-white surface inputs (total-Shape; see Fig.  3).

By integrating statistical and model-driven insights, the framework 
provides a robust platform for uncovering meaningful patterns while 
maintaining the reliability and interpretability essential for applica-
tions in neuroimaging. The weighted average formulation is defined as 
6 
follows: 

𝐺(𝑋,𝑊 ) =
∑

𝑤𝑖𝑥𝑖
∑

𝑤𝑖
(8)

where W is the weight tensor and the X is the pixel images tensor.

3.4. The global explanation of the 3D-framework

To compute the global explanation of the 3D framework, we first 
manually aligned and rescaled the two global XAI explanations (total-
SHAP, total-GradCam) to the average of the six components of the 
PCA-Shape (total-Shape). Then, we used Eq.  (8), incorporating a three-
component weight tensor of [0.85, 0.5, 0.1]. The weight combination 
[0.85, 0.5, 0.1] was chosen after empirical testing of multiple combina-
tions, to optimize faithfulness while maintaining reasonable complexity 
scores. Preliminary results showed that higher weights for total-Shape 
(e.g., 0.85) yielded superior faithfulness scores, reflecting the impor-
tance of feature importance in global explanations. This selection bal-
ances the trade-offs between faithfulness, complexity, and redundancy 
across the metrics. After we define the best combination, we conducted 
an ablation study to identify the optimal combination of the weight 
tensor. The different cases we examined were denoted as 851, 815, 
185, 158, 518, and 581, which are fixed-order representations of the 
methods in the following sequence: total-Shape, total-SHAP, and total-
GradCam explanations. The weights correspond to 0.85 as ‘8’, 0.5 as ‘5’, 
and 0.1 as ‘1’. For example, 3D-Framework-851 refers to the proposed 
3D-Framework with weight values of 0.85 for total-Shape, 0.5 for total-
SHAP, and 0.1 for total-GradCam. These components were derived 
from both the sulcal skeleton and the grey-white surface inputs of the 
total dataset, considering both the right and left hemispheres. In our 
specific study, the best combinations identified were 851 and 815 (see 
Supplementary Material Table 2).

To minimize potential bias that might occur by relying on only one 
deep learning network, we applied this approach to both the simple-3D-
CNN and simple-3D-MHL networks. Identifying the significant features 
of the networks explanations provides insights into the mechanisms 
driving the network’s decision-making process. For enhanced clarity, 
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the key brain sub-regions of interest, corresponding to the sulcal skele-
ton and grey-white surface, are visually depicted in Fig.  1a. Finally, 
the global explanation from the 3D framework was registered on a 
sulcal probabilistic atlas to illustrate the model’s pattern associated 
with determining the presence or absence of the PCS. The registration 
process involved affine transformations, including translation, rotation, 
scaling, and geometry adjustments, to align with the probabilistic atlas 
(the ICBM 2009a Nonlinear Asymmetric atlas, [13,14]).

3.5. Cohort’s description and pre-processing image analysis

We used the structural MRI of 596 participants from the TOP-OSLO 
study [12] for a binary classification task. The participants encom-
passed individuals with a diagnosis on the schizophrenia spectrum 
(183), on the bipolar disorder spectrum (151), and unaffected control 
participants (262). T1-weighted images were acquired using a 1.5 𝑇
Siemens Magnetom Sonata scanner (Siemens Medical Solutions, Erlan-
gen, Germany). The mean age of the schizophrenia spectrum cohort 
was 31.0 years (SD = 9.1), with a sex distribution of 108 men and 75 
women. For the bipolar spectrum cohort, the mean age was 34.3 years 
(SD = 11.6), with 65 men and 86 women. The healthy control group 
had a mean age of 34.7 years (SD = 9.7), with 138 men and 124 
women. Diagnostic groups were balanced across demographic variables 
to minimize potential confounding effects in downstream analyses.

Two experts, A.A. and H.V., performed image annotations, cate-
gorizing them into two classes: ‘no paracingulate sulcus’ (noPCS) and 
‘paracingulate sulcus’ (PCS). This annotation was based on the protocol 
described in [2] with further details available in the supplementary 
materials under ‘1.1 PCS classification of TOP-OSLO’ and is illustrated 
in Fig.  2a. A more analytical description of the TOP-OSLO cohort details 
is available in the study [12].

3.6. Processing of two distinct images inputs

We initially processed the brain structural MRIs using the BrainVISA 
software [32] extracting two images as inputs for the classifier: the 
grey-white surface and the sulcal skeleton. These were extracted from 
the raw MRI with an established protocol consisting of bias correc-
tion, histogram analysis, brain segmentation, hemisphere separation, 
dichotomization of the white matter from the union of grey matter 
and cerebrospinal fluid, and skeletonization of the result, as detailed 
in [33]. Specifically, the grey-white surface was obtained by minimiz-
ing a Markov field and the segmentation used homotopic deformations 
of the hemisphere bounding box, resulting in the grey-white surface, 
where voxels are dichotomized into either grey or white. The skeleton 
was then derived from this object by applying a homotopic erosion 
embedding a watershed alogrithm that preserves the initial topology 
resulting in the sulcal skeleton. These two modalities were then used 
to train and evaluate our networks as well as for our explainability 
methods. Fig.  1a, b, c. show the structural MRI and the corresponding 
grey-white surface and sulcal skeleton outputs from BrainVISA.

3.7. Hyper-parameter initialization

After randomly shuffling the data, each dataset was split into train-
ing, validation, and testing sets containing 70%, 20%, and 10% of the 
total number of images, respectively. To account for diagnostic het-
erogeneity (schizophrenia, bipolar disorder, and controls), the dataset 
splits were stratified to preserve diagnostic proportions across training, 
validation, and testing subsets. We additionally ensured that age and 
sex distributions were balanced across splits. This procedure reduced 
the risk of demographic or diagnostic bias influencing the classification 
results. Sparse categorical cross-entropy was used as the cost function 
and the loss function were optimized using the Adam algorithm [34]. 
After manual hyper-parameter searching the best learning rate was a 
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value of 0.0001. We utilized a strategy of exponentially decreased dur-
ing the first 50 epochs and then fixed at 0.0001 for the last 50 epochs. 
To train the networks, an early stopping criterion of 10 consecutive 
epochs was employed and a maximum of 100 epochs was used for both 
input modalities (sulcal skeleton and grey-white surface) for both the 
left (L) and right (R) hemispheres. Finally, we use data augmentation 
techniques including rotation (around the center of the image by a 
random angle from the range [−15◦, 15◦]), width shift (up to 20 pixels), 
height shift (up to 20 pixels), and Zero phase Component Analysis 
(ZCA; [35]) whitening (add noise in each image) to avoid overfitting.

3.8. Evaluation metrics for the explanation

A crucial aspect of this study lies in evaluating how accurate and 
comprehensive were the local and global explanations. To derive a 
useful explanation, two primary scores play a pivotal role: faithfulness
and complexity.

An intuitive way to assess the quality of an explanation is by mea-
suring how accurately it reflects the model’s actual decision-making 
behavior in response to input perturbations [36,37]. For a deep neural 
network 𝑓 and input 𝒙, we define the faithfulness of an explanation 
method 𝑔 as the Pearson correlation between the sum of attribution 
scores for a subset of features and the change in model output when 
those features are replaced by a baseline. This is formally expressed as:

𝑀faith(𝑓, 𝑔;𝒙) = corr𝑆

(

∑

𝑖∈𝑆
𝑔(𝑓,𝒙)𝑖, 𝑓 (𝒙) − 𝑓 (𝒙[𝒙𝒔 = 𝒙𝒇𝒔 ])

)

(9)

Here, 𝑆 is a randomly selected subset of feature indices (𝑆 ⊆
{1, 2,… , 𝑑}), 𝒙𝒔 are the perturbed features replaced by baseline values 
𝒙𝒇𝒔 , and 𝒙𝒇  are the remaining, unperturbed features.

To complement faithfulness, we also compute the complexity of an 
explanation, which captures how concentrated or diffuse the attribution 
is across input features. A lower complexity implies a more focused, and 
thus more interpretable, explanation. Complexity is measured using the 
entropy of the normalized attribution scores: 

𝑀compx(𝑓, 𝑔;𝒙) =
𝑑
∑

𝑖=1
𝑃𝑔(𝑖) ⋅ log

(

1
𝑃𝑔(𝑖)

)

(10)

where the attribution distribution 𝑃𝑔(𝑖) is defined as: 

𝑃𝑔(𝑖) =
|𝑔(𝑓,𝒙)𝑖|

∑𝑑
𝑗=1 |𝑔(𝑓,𝒙)𝑗 |

(11)

These two metrics offer complementary insights: faithfulness en-
sures that the explanation aligns with the model’s behavior, while 
complexity encourages sparsity and interpretability.

In order to evaluate these two explainability metrics, we used the 
software developed by Hedström et al. [38]. This software package 
is a comprehensive toolkit that collects, organizes, and evaluates a 
wide range of performance metrics, proposed for explanation methods. 
Note that we used a zero baseline (‘black’; 𝒙𝒇𝒔 = 𝟎) and 70 random 
perturbations to calculate the faithfulness score.

Finally, to extract the faithfulness and complexity scores of the 
global explanations for the total-SHAP, total-GradCam, and the pro-
posed 3D-Framework, we utilized again the software developed by
Hedström et al. [38]. As a first step we manually aligned and rescaled 
the two global XAI explanations (total-SHAP and total-GradCam) to the 
total-Shape. The input image consisted of the total-Shape results, while 
the total-GradCam, total-SHAP, and 3D-Framework global explanation 
served as reference explanations, respectively. In this context, the score 
of a global explanation makes sense, as the individual input brains of 
the cohort were aligned in the same template and the most significant 
variability of each class was assigned in the total-Shape. Consequently, 
we anticipated the classifier to classify correctly whether a MRI has a 
PCS or not.
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Table 1
Performance metrics of global explanation scores of faithfulness, and complexity for the global state of the art explanation methods; 
total-SHAP, total-GradCam and the propose 3D-Framework of the simple-3D-MHL network.
 Explainable evaluation score of used explainable methods
 XAI metrics XAI method Left sulcal skeleton Left white/grey Right sulcal skeleton Right white/grey 
 PCS/noPCS PCS/noPCS PCS/noPCS PCS/noPCS  
 Faithfulness (↑) total-SHAP 0.105/0.200 0.092/0.113 0.103/0.102 0.073/0.088  
 total-IntGrad 0.108/0.202 0.140/0.150 0.112/0.115 0.097/0.109  
 total-GradCAM 0.044/0.090 0.143/0.164 0.067/0.085 0.119/0.129  
 3D-Framework 0.223/0.274 0.207/0.222 0.188/0.195 0.192/0.214  
 Complexity (↓) total-SHAP 14.593/14.586 14.572/14.544 14.571/14.572 14.583/14.582  
 total-IntGrad 14.594/14.590 14.583/14.589 14.581/14.585 14.589/14.590  
 total-GradCAM 14.473/14.555 14.373/14.403 14.586/14.582 14.596/14.547  
 3D-Framework 14.584/14.563 14.582/14.587 14.579/14.573 14.587/14.587  
4. Results

4.1. Classifiers performance for presence or absence of paracingulate sulcus

For brevity, we discuss in the main manuscript only the simple-
3D-MHL results which outperformed the two-level CNN backbone net-
work (2CNN-3D-MHL). The analytical tables and results for 2CNN-
3D-MHL can be found in the supplementary material subsection 2.1 
(‘Classification results of the 2CNN-3D-MHL’ ; Table  1).

The performance of the simple-3D-MHL network in the left hemi-
sphere was higher (around 73.00% in all testing metrics and 74.10% 
in all validation metrics) than that in the right hemisphere (around 
58.00% in all testing metrics and 63.10% in the validation metrics). 
For the simple-3D-CNN, the performance of the network in the left 
hemisphere was higher (around 72.90% in all testing metrics and 
74.00% in all validation metrics) than that in the right hemisphere 
(around 56.00% in all testing metrics and 63.00% in the validation 
metrics). The analytical Figures and outcomes for the simple-3D-MHL 
and simple-3D-CNN networks are presented in supplementary material 
subsection 2.2 (‘Additional global explainability methods and different 
components PCA results’; Supplementary Fig. 1 a.,b.).

The discrepancy in performance between the left and right hemi-
spheres was to be expected for two reasons. First, the PCS is more 
prominent in the left than in the right hemisphere [39,40], including in 
psychopathological conditions such as schizophrenia [7]. Furthermore, 
the left PCS has a greater number of associations with regional cortical 
thickness and sulcal depth than the right PCS [6], implying more 
covariability of anatomical features contained in either of our input 
modalities with the presence of the PCS in the left hemisphere than 
the right.

4.2. Global explanations and their PCA component results

We extracted and evaluated the explainability results from both 
networks to avoid biased observations and to investigate whether 
there was a clear cause-and-effect relationship between the quality 
of explanation and prediction performance. We present the results of 
the simple-MHL network in the main manuscript as it had slightly 
better performance compared to the simple-3D-CNN. The results for the 
simple-3D-CNN are thoroughly detailed in the supplementary material 
subsection 2.2 (refer to ‘Additional global explainability methods and 
different components PCA results’; Supplementary Fig. 2 and 3).

The first component analysis of PCA explainability results of simple-
3D-MHL networks on the left and right hemisphere of the grey-white 
surface inputs mainly focus on the frontal lobe (mostly inferior lat-
eral and inferior medial), the cingulate gyrus, the temporal lobe, and 
occasionally the thalamus for detecting the presence or absence of 
the PCS. More specifically, for the detection of the presence of PCS 
(paracingulate sulcus; Fig.  4) in the left and right hemisphere the 
simple-MHL network focuses more in the frontal lobe (medial and 
inferior lateral), cingulate gyrus (mostly anterior), temporal lobe and 
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sometimes thalamus. Conversley, for the absence of PCS (No paracin-
gulate sulcus; Fig.  4) in the left hemisphere the network focuses in the 
frontal lobe (mostly inferior medial and inferior frontal), the temporal 
lobe, the cingulate gyrus, occasionally the thalamus, and specifically 
for the PCA-GradCam, the corpus callosum. On the right hemisphere 
the simple-MHL network focuses in frontal lobe (medial and lateral), 
the temporal lobe, and the cingulate gyrus.

Fig.  5.a,b displays the comprehensive explanations of PCA-Gra-
dCam, PCA-SHAP, and PCA-Shape for the simple-3D-MHL network 
when using the sulcal skeleton inputs. The neural network shows 
distributed attention but still emphasizes some key regions in both 
hemispheres. In the left hemisphere, for the PCS class, there is focus 
on the superior temporal sulcus and its branches, the posterior sylvian 
fissure, and parts of the central and precentral sulci, with some atten-
tion on the cingulate sulcus and the medial frontal sulcus (containing 
the PCS) (Fig.  5a.). Conversely, in the right hemisphere for the same 
class, emphasis is on the superior and inferior temporal sulci, cingulate 
sulcus, medial frontal sulcus (containing the PCS), and the sub-parietal 
sulcus (Fig.  5b.). For the noPCS class, the left hemisphere shows similar 
yet less specific attention than for the PCS class, with an additional 
focus on the sylvian fissure and insula, and the anterior cingulate sulcus 
(Fig.  5a.). In the right hemisphere, additional focus is shifted to the 
anterior cingulate sulcus, the sub-parietal sulcus, and elements of the 
ventricles (Fig.  5b.).

To validate the pattern indicating the presence or absence of the 
PCS, we assessed the variability across all six components of the PCA. 
Notably, we observed differences in the six PCA components between 
the explanations and the global feature importance (refer to Supple-
mentary Fig. 4). There were differences in the intensity and extent of 
regions highlighted between the sulcal skeleton and grey-white surface 
inputs, although the primary regions of focus remained consistent. 
We found that the faithfulness and complexity score of the PCA’s 
first component for SHAP and GradCam methods performed poorly 
compared to the weighted average output of all six components as 
described in subsection 3.4 (total-SHAP, total-GradCam). Consequently, 
we used total-SHAP, total-GradCam, and total-Shape to compute the 
global explanation for the 3D framework.

4.3. Global explanations from the 3D-framework and the pattern learning 
results using grey-white surface inputs

For the simple-3D-MHL on grey-white surface inputs (see Fig.  6a.c), 
in the right hemisphere the focus was on the frontal lobe, the insula, 
and parietal lobe in the PCS existence and, in the PCS absence (noPCS) 
on the temporal lobe, frontal lobe, cingulate gyrus and parietal lobe. 
In the left hemisphere, the PCS decision mostly relied on the cingulate 
gyrus, frontal lobe parietal lobe, and corpus collosum. The noPCS con-
dition predominantly focused on the frontal lobe, and lateral temporal 
lobe and cingulate gyrus (see Fig.  6a.c).

For the simple-3D-CNN on grey-white surface inputs (refer to Sup-
plementary material Fig. 6 a.) in the right hemisphere, highlighted 
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Fig. 4. Simple-3D-MHL results on the left and right hemisphere of grey-white surface brain inputs. a,b, show the explainability results for the PCS class images 
of the first component among the six components of PCA for the total input modality (PCA-Shape), the total corresponding GradCam results (PCA-GradCam), and 
the total corresponding SHAP results (PCA-SHAP). The feature’s importance (pixel attribution) varies from 0 (blue color) to 1 (red color), with high importance 
being 1 for the PCA-GradCam and PCA-Shape results. The orientation of the results are based on the medial anatomical views. All the presented results are align 
and mapping in the ICBM 2009a Nonlinear Asymmetric atlas [13,14]. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
the lateral inferior frontal lobe, and inferior temporal lobe in the PCS 
condition and the thalamus, cingulate gyrus, lateral anterior occipital 
lobe, and posterior temporal lobe. In the noPCS condition, the focus 
was on the thalamus, cingulate gyrus, the medial frontal lobe, and 
the posterior temporal lobe. In the left hemisphere, both conditions 
globally focused on the same regions: the lateral middle frontal lobe, 
and inferior and superior parietal lobe, and the thalamus and in the 
cingulate, frontal and medial parietal lobes, with a special focus on the 
9 
anterior cingulate gyrus. The PCS condition additionally focused on the 
lateral view of the posterior temporal lobe.

For both networks, in the right hemisphere the focus was primarily 
on the medial aspect of the brain (except for the PCS condition in the 
right hemisphere) with the main contributions in the frontal lobe and 
cingulate gyrus, suggesting a rather constrained explainability of the 
PCS presence. Conversely, in the left hemisphere, the focus was much 
more broadly distributed, with strong contributions stemming from the 



M. Mamalakis et al.

Fig. 5. Simple-3D-MHL results on the left and right hemisphere of sulcal skeleton brain inputs. a–b, show the explainability results for the noPCS class images of 
the first component among the six components of PCA for the total input modality (PCA-Shape), the total corresponding GradCam (PCA-GradCam), and the total 
corresponding SHAP results (PCA-SHAP). The feature’s importance (pixel attribution) varies from 0 (blue color) to 1 (red color), with high importance being 1 
for the PCA-GradCam and PCA-Shape results. The orientation of the results are based on the medial anatomical views. All the presented results are align and 
mapping in the ICBM 2009a Nonlinear Asymmetric atlas [13,14]. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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lateral cortex, suggesting that the developmental mechanisms leading 
to the presence of the PCS are related to the wider development of the 
brain [6].

4.4. Global explanation from the 3D-framework and the pattern learning 
results using sulcal skeleton inputs

A consistent method to overlay the outputs of the sulcal skeleton, 
similar to the process described for the grey-white surface outputs, was 
applied. For the simple-3D-MHL on sulcal skeleton inputs (Fig.  6b, c), 
in the right hemisphere, the presence of PCS focuses on the lateral 
superior temporal sulcus, sylvian fissure, inferior frontal sulcus, and the 
anterior cingulate sulcus. The absence of PCS (noPCS; Fig.  6c) focuses 
on the inferior temporal sulcus, superior temporal sulcus, ventricule, 
callosal sulcus, and inferior frontal sulcus. In the left hemisphere, the 
PCS and noPCS conditions had very different highlights. In the PCS 
condition, the main focuses were on the lateral posterior part of the 
lateral superior temporal sulcus, posterior inferior temporal sulcus, 
sylvian fissure, and the inferior parietal sulcus. In the noPCS condition, 
the main contributions were in the sylvian fissure, lateral superior tem-
poral sulcus, superior frontal sulcus, internal parietal sulcus, anterior 
cingulate sulcus, and ventricle.

For the simple-3D-CNN on sulcal skeleton inputs, aimed at the 
accurate detection of PCS within the sulcal hemisphere inputs, the 
pivotal sub-regions encompassed the superior temporal sulcus, inferior 
precentral sulcus, sylvian fissure and sub-parietal sulcus (see Supple-
mentary Material Fig. 6b). Conversely, when PCS was absent, the 
critical sub-regions within the right hemisphere sulcal skeleton inputs 
encompassed the ventricule, superior temporal sulcus, internal parietal 
sulcus and rostral sulcus. Transitioning to the left hemisphere, the sul-
cal skeleton inputs underscore the significance of the superior temporal 
sulcus the, sylvian fissure, and the internal parietal sulcus. When PCS 
was not present, the important left hemisphere sulcal skeleton inputs 
comprised the superior temporal sulcus, ventricle, inferior precentral 
sulcus, internal parietal sulcus (see Supplementary Material Fig. 6b).

We thereafter identified the common regions between the two 
networks’ outputs. The overlap results of the two networks, simple-3D-
CNN and simple-3D-MHL, for the presence and absence of PCS (noPCS) 
reveal several common regions of interest in both the right and left 
hemispheres. For the presence of PCS in the right hemisphere, both 
networks highlight the lateral superior temporal sulcus and sylvian 
fissure. In the left hemisphere under the PCS condition, both models 
emphasize the superior temporal sulcus, the sylvian fissure, and the 
internal parietal sulcus. For the absence of PCS (noPCS) in the left and 
right hemisphere, the networks overlap in highlighting the ventricle, 
part of superior temporal sulcus and the internal parietal sulcus.

4.5. Ablation study of our 3D explainability framework

An ablation study in the simple-3D-MHL model was conducted to 
evaluate various combinations of global explanations (total-GradCam 
and total-SHAP) and global feature importance (total-Shape) (see
Table  2). The best results were achieved by assigning the highest weight 
(0.85) to total-Shape. This aligns with the idea that the feature impor-
tance of the inputs plays a crucial role in the explanations. For both 
hemispheres in the sulcal skeleton, a weight of 0.5 given to total-SHAP 
produced the highest faithfulness scores. For the grey-white surface 
inputs, total-GradCam with the same weight yielded the best results 
(a weight of 0.5). There were no significant differences observed in the 
complexity scores among the different combinations. The same patterns 
were observed for the simple-3D-CNN (Supplementary material; Table 
2).
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Table 2
Performance metrics assessing the global explanation scores of faithfulness and 
complexity were computed across various weight combinations assigned to the 
global XAI methods (total-SHAP, total-GradCam) and global feature extraction 
(total-Shape) within the proposed 3D-Framework for evaluating the global 
explanations of the simple-3D-MHL network. These combinations, denoted as 
851, 815, 185, 158, 518, and 581, represent fixed-order representations of 
the assigned weights in the following sequence: total-Shape, total-SHAP, and 
total-GradCam explanations, with weight values of 0.85 represented as ‘8’, 0.5 
as ‘5’, and 0.1 as ‘1’. For instance, 3D-Framework-851 refers to the proposed 
3D framework with weight values of 0.85 in total-Shape, 0.5 in total-SHAP, 
and 0.1 in total-GradCam. The results shows the Right and Left white-grey (a) 
and sulcal skeleton (b) images.
 (a) Ablation study of the proposed 3D-Framework
 XAI metrics XAI method Left white/grey Right white/grey 
 PCS/noPCS PCS/noPCS  
 Faithfulness 3D-Framework-851 0.166/0.197 0.172/0.182  
 3D-Framework-815 0.207/0.222 0.192/0.214  
 3D-Framework-185 0.118/0.124 0.113/0.133  
 3D-Framework-158 0.143/0.173 0.155/0.162  
 3D-Framework-518 0.125/0.152 0.136/0.142  
 3D-Framework-581 0.087/0.102 0.103/0.112  
 Complexity 3D-Framework-851 14.582/14.582 14.595/14.592  
 3D-Framework-815 14.582/14.587 14.587/14.587  
 3D-Framework-185 14.585/14.582 14.584/14.587  
 3D-Framework-158 14.587/14.583 14.593/14.592  
 3D-Framework-518 14.592/14.584 14.594/14.594  
 3D-Framework-581 14.593/14.592 14.597/14.592  
 (b) Ablation study of the proposed 3D-Framework
 Faithfulness 3D-Framework-851 0.223/0.274 0.188/0.195  
 3D-Framework-815 0.204/0.233 0.165/0.174  
 3D-Framework-185 0.105/0.122 0.053/0.133  
 3D-Framework-158 0.074/0.095 0.122/0.076  
 3D-Framework-518 0.115/0.106 0.144/0.134  
 3D-Framework-581 0.126/0.138 0.135/0.142  
 Complexity 3D-Framework-851 14.584/14.563 14.579/14.573  
 3D-Framework-815 14.594/14.595 14.582/14.576  
 3D-Framework-185 14.595/14.584 14.572/14.595  
 3D-Framework-158 14.592/14.583 14.573/14.594  
 3D-Framework-518 14.583/14.585 14.573/14.576  
 3D-Framework-581 14.592/14.586 14.573/14.587  

4.6. Evaluation of the global explanation from the 3D-framework and the 
XAI methods and the pattern learning results

To evaluate whether the global explanation from the 3D-Framework 
was superior to those provided by SHAP or GradCam, we scored the 
explanations with respect to faithfulness and complexity (see Table  1). 
For the simple-3D-MHL network, our proposed 3D framework outper-
formed total-GradCam and total-SHAP in terms of faithfulness score in 
the left hemisphere with values exceeding 0.21 compared to scores of 
less than 0.16 for total-GradCam, and less than 0.11 for total-SHAP. 
In the right hemisphere, our proposed 3D framework again outper-
formed total-GradCam and total-SHAP, achieving faithfulness scores 
over 0.18 compared to scores of less than 0.13 for total-GradCam, 
and less than 0.10 for total-SHAP. The 3D framework achieved the 
second-best result in complexity scores with total-GradCam having 
the lowest score in the left hemisphere and total-SHAP in the right 
hemisphere.  To ensure the robustness of our findings and to mitigate 
potential biases arising from relying solely on linear combination-based 
explanation methods such as SHAP and GradCAM, we further compared 
our framework against Integrated Gradients (total-IntGrad), a well-
established attribution technique [41]. Our framework demonstrated 
superior performance on both explanation metrics, faithfulness and 
complexity, consistently across all hemispheres and input modalities 
(see Table  1).

To strengthen the evaluation of our framework, we performed 
a detailed statistical analysis comparing explanation quality across 
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Fig. 6. Explainable method’s scores and the extraction of the total overlapping pattern learning explanation of the left and right hemispheres and different inputs 
with expert’s observation. a shows the total overlapping pattern learning results for the right and left hemisphere of the brain for grey-white surface images of 
the simple-3D-MHL network. b shows the total overlapping pattern learning results for the right and left hemispheres of the brain for sulcal skeleton inputs of the 
simple-3D-MHL network. All the presented results are align and mapping in the ICBM 2009a Nonlinear Asymmetric atlas [13,14]. c shows the pattern learning 
results from the overlapping of the simple-3D-MHL deep learning networks on the total overlapping pattern learning results of the lateral and medial views based 
on experts’ observation. For the grey-white surface input we used the acronyms, T: thalamus, H: hypothalamus, Fl: Frontal lobe, Ol: occipital lobe, Tl: temporal 
lobe, Pl: parietal lobe, Cc: corpus callosum, Cg: cingulate gyrus, NA: none. For the skeleton sulcal input we used the acronyms, S.T.s: superior temporal sulcus, 
S.T.i: inferior temporal sulcus, F.C.M.ant: anterior cingulate sulcus, S.pa.int:internal parietal sulcus, F.C.L.p: sylvian fissure, S.F.sup: superior frontal sulcus, S.F.int: 
internal frontal sulcus, S.F.inf: inferior frontal sulcus, S.Call: callosal sulcus.
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Table 3
Comparison of explanation metrics (Faithfulness and Complexity) across PCS and noPCS classes and anatomical regions. Values 
represent the mean and 95% confidence interval (CI) of our method, and p-values from paired t-tests comparing SHAP and 
GradCAM with our method.
 Region Class Metric Ours (Mean [95% CI]) SHAP p-value GradCAM p-value 
 Left sulcal skeleton PCS Faithfulness 0.287 [0.219, 0.355] 0.040 0.940  
 Left grey/white surface PCS Faithfulness 0.266 [0.155, 0.376] 0.038 0.749  
 Right sulcal skeleton PCS Faithfulness 0.234 [0.222, 0.246] 0.049 0.034  
 Right grey/white surface PCS Faithfulness 0.317 [0.168, 0.466] 0.135 0.046  
 Left sulcal skeleton noPCS Faithfulness 0.138 [0.038, 0.238] 3.85 × 10−3 1.43 × 10−2  
 Left grey/white surface noPCS Faithfulness 0.329 [0.168, 0.427] 3.68 × 10−3 0.920  
 Right sulcal skeleton noPCS Faithfulness 0.201 [0.036, 0.365] 0.151 2.27 × 10−4  
 Right grey/white surface noPCS Faithfulness 0.189 [0.108, 0.270] 6.39 × 10−4 7.85 × 10−4  
 Left sulcal skeleton PCS Complexity 13.33 [13.29, 13.37] 8.48 × 10−9 5.25 × 10−9  
 Left grey/white surface PCS Complexity 12.28 [12.23, 12.33] 4.76 × 10−8 3.74 × 10−5  
 Right sulcal skeleton PCS Complexity 13.22 [13.17, 13.27] 1.68 × 10−10 8.96 × 10−3  
 Right grey/white surface PCS Complexity 12.27 [12.19, 12.34] 3.30 × 10−5 4.51 × 10−10  
 Left sulcal skeleton noPCS Complexity 13.29 [13.25, 13.33] 6.70 × 10−8 9.95 × 10−1  
 Left grey/white surface noPCS Complexity 12.25 [12.21, 12.30] 5.38 × 10−6 1.10 × 10−4  
 Right sulcal skeleton noPCS Complexity 13.28 [13.23, 13.34] 2.51 × 10−10 2.80 × 10−1  
 Right grey/white surface noPCS Complexity 12.25 [12.19, 12.32] 2.14 × 10−4 2.06 × 10−6  
methods. Specifically, we conducted two-sided paired t-tests for each 
anatomical region to assess significant differences between our frame-
work and the SHAP and GradCAM baselines. Results are reported 
alongside 95% confidence intervals, enhancing the interpretability and 
transparency of our findings. Each comparison was based on 𝑛 = 10
participants per group (PCS and noPCS). The analysis demonstrates 
that our method significantly outperforms the baselines in both faithful-
ness and complexity metrics across most regions and input modalities 
(see Tables  3), thereby underscoring the statistical robustness and 
consistency of our explanation approach.

Up to this point, we have mainly explored the explanation results 
visually. However, we aimed to automate the process to identify the 
most significant subregions of interest based on the hypothesis (the 
classification task). To this end, we applied an affine registration to the 
total overlapping results of sulcal skeleton inputs from each hemisphere 
onto a probabilistic atlas of sulci [42]. For this task, we explored the 
sulcal skeleton output of the simple-3D-MHL network as it slightly out-
performed the simple-3D-CNN (see Supplementary Material Table 2 ii.) 
in the classification task and delivered better global explanations, faith-
fulness, and complexity scores than the simple-3D-CNN. Additionally, 
it follows patterns based on evidence from the literature [15,43,44].

Fig.  7 presents the distribution of the most relevant voxels for 
outcome decisions within sulcal probabilistic areas according to dif-
ferent thresholds. The decisions in the right hemisphere were highly 
focused on specific sulci, with up to three sulci contributing to the 20% 
threshold, which we retained as the lower threshold (blue). Conversely, 
the left hemisphere predictions were based on broader considerations, 
with a number of sulci already contributing to the decision at the 
5% threshold, which we retained as the lower threshold for the left 
hemisphere (blue).

For both conditions and both hemispheres, a specific focus was on 
the superior temporal sulcus and its posterior branches with a smaller 
but consistent contribution of the internal parietal and sub-parietal 
sulci. The noPCS condition on the left hemisphere additionally focused 
on the precentral sulcus and the Sylvian fissure. Interestingly, no spe-
cific focus was oriented towards the internal frontal sulcus (S.F.int), the 
probabilistic region in which the PCS is located when present.

5. Discussion

Explainability is essential in medical imaging. Healthcare applica-
tions of AI need to be able to explain their decision-making to build 
trust and ensure that their predictions align with other symptoms 
and signs that affect health. Neuroimaging, the combination of brain 
images and computational methods, is a research application of medical 
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imaging. Here, explainability for AI predictions supports the assessment 
of the validity of results, but can also identify key contributors to 
decisions that in themselves reveal new patterns and directions for 
future investigation.

Our prior study [1] categorized the need for AI explanations into 
self-explainable, semi-explainable, non-explainable applications, and 
new-pattern discovery, based on the variability of expert opinions, 
the stability of the evaluation protocol and the representation dimen-
sionality of the application. We applied the proposed guidance in a 
binary classification task related to a sub-region of the medial surface 
of the brain where secondary sulci are highly reproducible related with 
symptoms of psychosis, specifically hallucinations. This application was 
of the new-pattern discovery class. The output of the explainability 
indicated a wide distribution of brain regions on which the predictions 
depend suggesting covariant development of these regions during the 
perinatal period [45].

Automatic classification of psychotic and control patients based on 
structural MRI is a challenging task [46]. In most cases, an acceptable 
detection rate is around 80.0% in clinical applications. However, in 
highly heterogeneous and variable cohorts, a lesser performance can 
be acceptable; approximately 60.0–70.0% acceptance accuracy; [47,
48]. The TOP-OSLO cohort was particularly difficult for classification 
tasks of psychotic and control patients using structural MRI, with an 
accuracy of less than 60.0% [46]. The variability of the paracingulate 
region in the TOP-OSLO cohort and the heterogeneity of the dataset 
create a highly challenging context for the automatic binary classi-
fication task of PCS presence. In this study, an accuracy of more 
than 70.0% in the left hemisphere and more than 60.0% in the right 
hemisphere was achieved, delivering an acceptable automated 3D deep 
learning network [47,48] to apply global explainability methods for 
new-pattern discovery [1]. While these classification results are modest, 
especially in the right hemisphere, they are in line with performance 
reported in similarly complex neuropsychiatric tasks. We acknowl-
edge this constraint on predictive accuracy and emphasize the study’s 
primary contribution in explainability and novel pattern discovery.

For the binary classification task of PCS presence, we developed two 
different 3D deep learning networks: a simple 3D convolutional neural 
network and a two-headed attention layer network. These networks 
utilized 3D brain inputs derived from preprocessed structural MRI 
scans, which included grey-white surface boundaries and sulcal skele-
tons from both hemispheres of a well-annotated cohort of 596 subjects. 
The performance of all networks was higher in the left hemisphere 
than in the right hemisphere. This discrepancy in performance was 
expected as the PCS is more prominent in the left hemisphere, including 
in psychopathological situations such as schizophrenia [7]. Moreover, 
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Fig. 7. A representation depicting the presence and absence of the paracingulate sulcus on the left hemisphere sulcal skeleton input a, is the histogram of the 
number of voxels per sulcus based on the probabilistic mapping of sulci for both conditions (PCS and noPCS) and both hemispheres, using sulcal skeleton brain 
input images with the simple-3D-MHL network. The voxels are extracted after thresholding for highest explainability values, with thresholds of the highest 5, 10, 
and 20% intensity on the left hemisphere (high threshold: blue, medium threshold: orange, low threshold: grey). b, the total overlapping pattern learning results 
of the three most significant sulcal sub-region for the three different level of intensity thresholding. The acronyms for all sulci are defined in Supplementary Fig. 
5., and NA: undefined. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the left PCS has more associations with regional cortical thickness 
and sulcal depth than the right PCS, implying greater covariability of 
anatomical features in our input modalities with the presence of the 
PCS in the left hemisphere [6].

We developed an innovative XAI 3D-Framework to address the 
need for accurate, low-complexity global explanations in neuroimaging, 
where traditional 2D methods fall short in capturing the intricacies 
of 3D representational spaces. Designed for the binary classification 
of PCS presence, our framework provides robust, faithful global ex-
planations that outperform GradCam and SHAP in faithfulness. The 
shift from traditional 2D explainability to a 3D volumetric approach 
represents a key strength of our framework, providing anatomically 
grounded insight that 2D methods cannot capture. Key novelties in-
clude the integration of statistical features (Shape) with reduced dimen-
sionality information, ensuring explanations reflect both model learn-
ing and cohort-specific variability, and the combined use of GradCam 
and SHAP to reduce inter-method variability and enhance reliability. 
Additionally, the shift from local, subject-level explanations to global, 
population-wide interpretations enables identification of stable patterns 
of anatomical relevance, thereby enhancing model trustworthiness and 
biological plausibility. This multi-method framework sets a new stan-
dard for explainable AI in neuroimaging, offering actionable insights 
for complex tasks like cortical morphology analysis. Our global expla-
nations surpassed those produced by GradCam and SHAP in terms of 
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faithfulness, providing a reliable interpretation of the deep networks 
for this classification task.

The overall explainability outputs cover wide regions of the brain, 
but we can notice some repetitive patterns through the different
pipelines and modalities. In particular, there is a repeat of the cingulate 
region, the posterior temporal region, and both the medial and inferior 
frontal cortices. This may reflect some neurodevelopmental intertwin-
ing of the macroscopical development of the PCS and these regions. 
Regarding the cingulate and medial frontal regions, this intertwining 
is self-explanatory as the PCS is located in the medial frontal region, 
directly adjacent to the cingulate region, and as such the developmental 
events leading to the formation of a PCS are very likely to affect these 
regions. The two other notable regions are the inferior frontal region 
and the posterior temporal region. In the fetus, the sulci matching these 
regions (namely the inferior frontal sulcus and the posterior superior 
temporal sulcus) have both been reported to start appearing at 26 
weeks of gestational age (w GA), while the cingulate sulcus appears 
earlier (around 23w GA) and the ‘‘secondary cingular sulci’’, which 
encompass the PCS, appear later, at 31w GA [49]. This may point 
towards a time-window which is decisive to the development of the 
PCS, prior to its actual apparition.

In terms of functional interpretation, it is interesting to notice a 
striking similarity between the regions on which the AI mostly focuses 
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and the regions which have been reported to show the most functional 
connectivity with the paracingulate region [15,43], and the anterior 
cingulate region [44]. These functional overlaps support the robustness 
and neurobiological validity of the regions highlighted by our global 
XAI framework. These studies report relevant functional connectivity 
between the medial frontal lobe (including the PCS) and the temporal 
region (including a focus on the posterior superior temporal region), 
the inferior frontal region, and the medial parietal region, which are all 
regions showing particular interest in the present work. Both [15,43] 
investigate the relation between the presence of a PCS and the related 
functional connectivity in these regions, and obtain more focused re-
sults (respectively in the cerebellum and superior anterior temporal 
region, or in the medial frontal region), but the important functional 
relationships between these regions support the relevance of the regions 
highlighted by our results.

The effectiveness of extracting generalized patterns using our pro-
posed framework underscores the importance of incorporating data 
from multiple cohorts. This generalizability is a further strength, al-
lowing our framework to be adapted for large-scale studies across 
diverse populations and clinical contexts. To this end, we plan to 
apply the framework to additional cohorts, such as BeneMin [50] 
and Biobank [51], to identify shared patterns in the classification of 
PCS presence and absence. Combining XAI techniques with dimen-
sionality reduction methods may further reveal overlapping aspects 
of the data. Advanced approaches, such as t-SNE for non-linear di-
mensionality reduction, could also provide deeper insights into these 
relationships. Additionally, we aim to extend the framework’s applica-
tion to other neurological conditions and classification tasks, including 
schizophrenia and bipolar disorder, by leveraging external datasets and 
improving interpretability techniques. Future work will also investigate 
uncertainty quantification techniques, such as test-time dropout and 
ensemble modeling, to assess the robustness and confidence of both 
model predictions and explanation maps. This would further strengthen 
the clinical interpretability and reliability of our proposed framework.

Despite its strengths, the present study has a few limitations. First, 
all results are based on the TOP-OSLO dataset, and broader generaliza-
tion requires external validation on independent cohorts, as the current 
findings may pose a risk of overfitting. Future validation using external 
and larger public datasets such as the Human Connectome Project [52] 
or UK Biobank [51] will be essential. Second, the framework cur-
rently assumes access to reliable manual annotations of PCS, which 
may not always be available. Inter-rater variability and the scalability 
of manual labeling protocols present practical challenges that merit 
further investigation. Third, while we use SHAP, GradCAM and Inte-
grated Gradients due to their complementarity and strong prior use in 
neuroimaging explainability, we acknowledge that other explainability 
methods, such as Layer-wise Relevance Propagation (LRP) or Local 
Interpretable Model-agnostic Explanations (LIME) are not included in 
our framework. Future extensions could explore their integration for 
additional robustness.

While our current implementation is voxel-based, we acknowledge 
that surface-based learning may provide a more natural and anatom-
ically meaningful representation of sulcal morphology, including the 
PCS. Sulci are inherently defined on the cortical surface, and lever-
aging surface-based methods, such as mesh-based CNNs or spherical 
mapping techniques, could lead to finer and more topology-consistent 
explanations. Although volumetric modeling allows us to maintain 
compatibility with many existing clinical pipelines and explainability 
tools, future extensions of our framework could explore the incor-
poration of surface-based architectures to improve both classification 
accuracy and interpretability. We also acknowledge that while we eval-
uated three CNN/MHL models, extending the framework to additional 
architectures (e.g., transformers, graph neural networks; [53,54]) re-
mains an important direction. Moreover, the computational complexity 
of MHL grows exponentially with voxel input size; therefore, efficient 
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attention-based alternatives such as Performer [55] should be consid-
ered. Although GradCAM provides only indirect feature localization, 
we mitigate this limitation by combining GradCAM with SHAP and 
PCA, which produces more robust and interpretable explanations. In 
addition, AI-based segmentation methods could be leveraged in future 
extensions by building on the existing TOP-OSLO annotations, while 
surface-based learning approaches [56,57] also represent a promising 
direction for further development.

In summary, this study introduces a novel, integrated, and scal-
able 3D explainability framework that bridges methodological gaps in 
neuroimaging AI and lays a foundation for a systematic, biologically 
grounded exploration of sulcal variability. This study establishes a 
foundation for systematic exploration of sulcal variability through deep 
learning, with the potential to advance our understanding of cognitive 
and functional variability as well as pathological changes.

6. Conclusion

In this study, we classified the presence or absence of the paracin-
gulate sulcus (PCS) in a diverse cohort of 596 structural MRIs using 
3D deep convolutional neural networks and attention mechanisms. 
To address the lack of robust global explainability methods for 3D 
neuroimaging data, we developed an innovative XAI 3D-Framework. 
This framework provides accurate and low-complexity global expla-
nations for PCS detection by integrating statistical features (Shape) 
with XAI methods (GradCam and SHAP) alongside reduced dimension-
ality information, ensuring that the explanations capture both model 
learning and cohort-specific variability. Furthermore, the combined 
application of GradCam and SHAP mitigates inter-method variability, 
thereby enhancing the reliability and robustness of the explanations.

Our framework outperformed established methods like GradCam 
and SHAP in faithfulness, enabling the robust identification of sub-
regions critical for decision-making through a fusion of global expla-
nations and statistical features. Key patterns identified include a focus 
on the posterior temporal and internal parietal regions on the sulcal 
skeleton, and on the cingulate region and thalamus when analyzing 
the grey-white surface. These findings indicate potential co-variation 
between these structures, likely underpinned by shared genetic or 
developmental mechanisms. Such insights hold significant implications 
for both neurodevelopmental and pathological research, providing a 
foundational framework for guiding future investigative trajectories.

Our work advances both deep learning and neuroscience by en-
abling automated, unbiased annotations and delivering unprecedented 
insights into sulcal variability and its functional or pathological rele-
vance. The XAI 3D-Framework sets the stage for broader applications 
in medical imaging and other complex computer vision tasks, provid-
ing a foundation for comprehensive exploration of neuroanatomy and 
developmental mechanisms.
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